skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Evans, John A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Immersed finite element methods provide a convenient analysis framework for problems involving geometrically complex domains, such as those found in topology optimization and microstructures for engineered materials. However, their implementation remains a major challenge due to, among other things, the need to apply nontrivial stabilization schemes and generate custom quadrature rules. This article introduces the robust and computationally efficient algorithms and data structures comprising an immersed finite element preprocessing framework. The input to the preprocessor consists of a background mesh and one or more geometries defined on its domain. The output is structured into groups of elements with custom quadrature rules formatted such that common finite element assembly routines may be used without or with only minimal modifications. The key to the preprocessing framework is the construction of material topology information, concurrently with the generation of a quadrature rule, which is then used to perform enrichment and generate stabilization rules. While the algorithmic framework applies to a wide range of immersed finite element methods using different types of meshes, integration, and stabilization schemes, the preprocessor is presented within the context of the extended isogeometric analysis. This method utilizes a structured B-spline mesh, a generalized Heaviside enrichment strategy considering the material layout within individual basis functions’ supports, and face-oriented ghost stabilization. Using a set of examples, the effectiveness of the enrichment and stabilization strategies is demonstrated alongside the preprocessor’s robustness in geometric edge cases. Additionally, the performance and parallel scalability of the implementation are evaluated. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available November 1, 2026
  3. null (Ed.)